1. J. Wang, P. Cieplak and P. A. Kollman. How well does a restrained electrostatic potential (RESP) model perform in calcluating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049-1074 (2000) [AMBER99] (DOI)
  2. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179-5197 (1995) [AMBER94] (DOI)
  3. G. Moyna, H. J. Williams, R. J. Nachman, and A. I. Scott. Conformation in solution and dynamics of a structurally constrained linear insect kinin pentapeptide analogue. Biopolymers 49, 403-413 (1999) [AIB charges] (DOI)
  4. W. S. Ross and C. C. Hardin. Ion-induced stabilization of the G-DNA quadruplex: Free energy perturbation studies. J. Am. Chem. Soc. 116, 6070-6080 (1994) [Alkali Metal Ions] (DOI)
  5. J. Aqvist. Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations. J. Phys. Chem. 94, 8021-8024 (1990) [Alkaline Earth Ions, radii adapted for AMBER combining rule] (DOI)
  6. C. Oostenbrink, A. Villa, A. E. Mark, W. F. van Gunsteren. A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6.  J. Comput. Chem. 25, 1656-1676 (2004) (DOI)
  7. G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, W.L. Jorgensen. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B. 105, 6474-6487 (2001) (DOI)
  8. A. D. MacKerell, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 [CHARMM22] (DOI)
  9. A. D. MacKerell, N. Banavali, N. Foloppe. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2001) [CHARMM27] (DOI)
  10. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein.   Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935 (1983) (DOI)
  11. W. L. Jorgensen and J. D. Madura. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys. 56, 1381-1392 (1985) (DOI)
  12. W. L. Jorgensen and C. Jenson. Temperature Dependence of TIP3P, SPC, and TIP4P Water from NPT Monte Carlo Simulations: Seeking Temperatures of Maximum Density. J. Comput. Chem. 19, 1179-1186 (1998) (DOI)
  13. M. W. Mahoney and W. L. Jorgensen. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910-8922 (2000) (DOI)
  14. A.J. Hopfinger. Conformational Properties of Macromolecules.  Academic Press, New York, NY (1973)
  15. L. Pauling. Chapter 11, in General Chemistry, 3rd ed., W.H. Freeman Press, San Francisco, CA (1970)
  16. R. A. Engh, R. Huber. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A47, 392-400 (1991) (DOI)
  17. A. A. Chen and R. V. Pappu. Parameters of Monovalent Ions in the AMBER-99 Forcefield: Assessment of Inaccuracies and Proposed Improvements. J. Phys. Chem. B 111 (41), 11884-11887 (2007) (DOI)
  18. Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24 (16), 1999-2012 (2003) (DOI)
  19. E. J. Sorin and V. S. Pande. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J 88 (4), 2472-2493 (2005) (DOI)
  20. A. J. DePaul, E. J. Thompson, S. S. Patel, K. Haldeman and E. J. Sorin. Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucl. Acid Res. 38 (14), 4856-4867 (2010) (DOI)
  21. H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. Hura, and T. Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120 (20), 9665-9678 (2004) (DOI)
  22. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The Missing Term in Effective Pair Potentials. J. Phys. Chem 91 (24), 6269-6271 (1987) (DOI)
  23. D. Chander, J. D. Weeks and H. C. Andersen. Van der Waals picture of liquids, solids, and phase transformations. Science 220, p787 (1983) (DOI)
  24. M. O. Steinhauser. A molecular dynamics study on universal properties of polymer chains in different solvent qualities. Part 1. A review of linear chain properties. J. Chem. Phys. 122, 094901 (2005) (DOI)
  25. D. Frenkel and B. Smit. Understanding Molecular Simulations, Second Edition: From Algorithms to Applications. Academic Press, San Diego, CA (2002)
  26. J. E. Kohn, I. S. Millett, J. Jacob, B. Žagrović, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I. Ruczinski, S. Doniach, K. W. Plaxco. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. USA 101, 12491-12496 (2004) (DOI)
  27. H. T. Tran and R. V. Pappu. Toward an accurate theoretical framework for describing ensembles for proteins under strongly denaturing conditions. Biophys. J. 91, 1868-1886 (2006) (DOI)
  28. H. Qian and J. A. Schellman. Helix-coil theories: A comparative study for finite length polypeptides. J. Phys. Chem. 96, 3987-3994 (1992) (DOI)
  29. H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. USA 78, 2179-2183 (1981) (PDF)
  30. A. Vitalis, N. A. Baker, and J. A. McCammon. ISIM: A Program for Grand Canonical Monte Carlo Simulations of the Ionic Environment of Biomolecules. Mol. Simul. 30 (1), 45-61 (2004) (DOI)
  31. D. Kofke and E. D. Glandt. Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol. Phys. 64 (6), 1105-1131 (1988) (DOI)
  32. W. R. P. Scott, A. E. Mark, and W. F. van Gunsteren. On using time-averaging restraints in molecular dynamics simulation. J. Biomol. NMR 12 (4), 501-508 (1998) (DOI)
  33. F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 86 (10), 2050-2053 (2001) (DOI)
  34. F. Calvo. Sampling along reaction coordinates with the Wang-Landau method. Mol. Phys., 100 (21), 3421-3427 (2002) (DOI)
  35. C. Zhou and R. N. Bhatt. Understanding and improving the Wang-Landau algorithm. Phys. Rev. E, 72 (2), 025701(R) (2005) (DOI)
  36. R. E. Belardinelli and V. D. Pereyra. Fast algorithm to calculate density of states. Phys. Rev. E, 75 (4), 046701 (2007) (DOI)
  37. A. Vitalis and A. Caflisch. Equilibrium sampling approach to the interpretation of electron density maps. Structure, 22 (1), 156-167 (2014) (DOI)
  38. B. Roux. The calculation of the potential of mean force using computer simulations. Comp. Phys. Comm., 91 (1-3), 275-282 (1995) (DOI)
  39. C. C. Lee, R. H. Walters, and R. M. Murphy. Reconsidering the mechanism of polyglutamine peptide aggregation. Biochemistry, 46 (44), 12810-12820 (2007) (DOI)
  40. S. Chen, F. A. Ferrone, and R. Wetzel. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA, 99 (18), 11884-11889 (2002) (DOI)
  41. A. Blondel and M. Karplus. New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities. J. Comput. Chem., 17 (9), 1131-1142 (1996) (DOI)
    Random seeds
  42. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, Volume 2 of Fortran Numerical Recipes, Second Edition. Cambridge University Press, New York (1996)
  43. G. Marsaglia and W. W. Tsang. 2000. A simple method for generating gamma variables. ACM Trans. Math. Softw. 26, 363-372 (2000) (DOI)
    Monte Carlo methods and Metropolis algorithm
  44. N. Metropolis, A. W. Rosenbluth, N. M. Rosenbluth, A. N. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087-1092 (1953) (DOI)
  45. A. Vitalis and R. V. Pappu. Methods for Monte Carlo simulations of biomacromolecules. Annu. Rep. Comput. Chem. 5, 49-76 (2009) (DOI).
  46. D. Frenkel and B. Smit. Understanding Molecular Simulations, Second Edition: From Algorithms to Applications. Academic Press, San Diego, CA (2002)
    Molecular, Langevin, and Brownian dynamics
  47. M. Karplus and J. A. McCammon. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646- 652 (2002) (DOI)
  48. J. M. Haile. Molecular dynamics simulation: Elementary methods. John Wiley and Sons, New York,  NY (1992)
  49. D. L. Ermak and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 1352-1360 (1978) (DOI).
  50. W. F. van Gunsteren and H. J. C. Berendsen. Algorithms for Brownian dynamics. Mol. Phys. 45, 637-647 (1982) (DOI)
  51. S. He and H. A. Scheraga. Macromolecular conformational dynamics in torsional angle space. J. Chem. Phys. 108 , 271-300 (1998) (DOI)
  52. M. G. Paterlini and D. M. Ferguson. Constant temperature simulations using the Langevin equation with velocity Verlet integration. Chem. Phys. 236, 243-252 (1998) (DOI)
  53. R. D. Skeel and J. A. Izaguirre. An impulse integrator for Langevin dynamics. Mol. Phys. 100, 3885-3891 (2002) (DOI)
  54. B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18 (12), 1463-1472 (1997) (DOI)
  55. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327-341 (1977) (DOI)
  56. S. Miyamoto and P. A. Kollman. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13 (8), 952-962 (1992) (DOI)
  57. H. C. Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comp. Phys. 52 (1), 24-34 (1983) (DOI)
  58. P. Gonnet. P-SHAKE: A quadratically convergent SHAKE in O(N2). J. Comp. Phys. 220 (2), 740-750 (2007) (DOI)
  59. E. Vanden-Eijnden and G. Ciccotti. Second-order integrators for Langevin equations with holonomic constraints. Chem. Phys. Lett. 429 (1-3), 310-316 (2006) (DOI)
  60. A. K. Mazur. Quasi-Hamiltonian equations of motion for internal coordinate molecular dynamics of polymers. J. Comput. Chem. 18 (11), 1354-1364 (1997) (DOI)
  61. J. Chen, W. Im, C. L. Brooks III. Application of torsion angle molecular dynamics for efficient sampling of protein conformations. J. Comput. Chem. 26 (15), 1565-1578 (2005) (DOI)
  62. A. Vitalis and R. V. Pappu. A simple molecular mechanics integrator in mixed rigid body and dihedral angle space. J. Chem. Phys., under review (2014).
    Mixed molecular dynamics/Monte Carlo
  63. F. Guarnieri and W. C. Still. A Rapidly Convergent Simulation Method: Mixed Monte Carlo/Stochastic Dynamics. J. Comput. Chem. 15, 1302-1310 (1994) (DOI)
  64. M. O. Steinhauser. A molecular dynamics study on universal properties of polymer chains in different solvent qualities. Part I. A review of linear chain properties. J. Chem. Phys. 122, 094901 (2005) (DOI)
  65. J. Nocedal. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation 35, 773-782 (1980) (PDF).
  66. C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA J. Appl. Math. 6 (1), 76-90 (1970) (DOI)
  67. D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24 (111), 647-656 (1970) (PDF)
  68. R. Fletcher. A New Approach to Variable Metric Algorithms. The Computer Journal 13 (3), 317-322 (1970) (DOI)
  69. D. Goldfarb. A family of variable-metric methods derived by variational means. Math. Comput. 24, 23-26 (1970) (DOI)
  70. R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal 7 (2), 149-155 (1964) (DOI)
  71. E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle, 16, 35-43 (1969). (PDF)
    Periodic boundary conditions
  72. G. Makov and M. C. Payne. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014-4022 (1995) (DOI)
    Particle-mesh Ewald summation
  73. T. Darden, D. York and L. Pedersen. Particle mesh Ewald-an NlogN method for Ewald sums in large systems. J. Chem. Phys 98, 10089–10092 (1993) (DOI)
  74. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L. Pedersen. A smooth particle mesh Ewald method. J. Chem. Phys 103, 8577–8593 (1995) (DOI)
  75. H. G. Petersen. Accuracy and efficiency of the particle mesh Ewald method.  J. Chem. Phys. 103, 3668-3679 (1995) (DOI)
  76. P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369 (3), 253-287 (1921) (DOI)
    Spherical-cutoff methods
  77. P. J. Steinbach and B. R. Brooks. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667-683 (1994) (DOI)
  78. R. Garcia-Pelayo. Distribution of distance in the spheroid. Journal of Physics A: Mathematical and General 38, 3475-3482 (2005) (DOI)
    Generalized reaction-field methods
  79. I. G. Tironi, R. Sperb, P. E. Smith, and W. F. van Gunsteren. A generalized reaction field method for molecular dynamics simulations.  J. Chem. Phys. 102, 5451-5459 (1995). (DOI)
  80. H. J. C. Berendsen, J. P. M. Postma. W. F. van Gunsteren, A. Dinola, and J. R. Haak. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 81, 3684–3690 (1984) (DOI)
  81. H. C. Andersen. Molecular dynamics at constant pressure and/or temperature. J. Chem. Phys. 72, 2384-2393 (1980) (DOI)
  82. G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity-rescaling. J. Chem. Phys. 126, p014101 (2007) (DOI)
  83. S. C. Harvey, R. K.-Z. Tan, and T. E. Cheatham III. The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem. 19 (7) 726-740 (1998) (DOI)
  84. M. Lingenheil, R. Denschlag, R. Reichold and P. Tavan. The “hot-solvent/cold-solute” problem revisited. J. Chem. Theor. Comput. 19 (7) 1293-1306 (2008) (DOI)
  85. G. J. Martyna, D. J. Tobias, and M. L. Klein. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101 (5), 4177-4189 (1995) (DOI)
  86. H. A. Stern. Simple algorithm for isobaric-isothermal molecular dynamics. J. Comput. Chem. 25 (5), 749-761 (2004) (DOI)
  87. S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52 (2), 255-268 (1984) (DOI)
  88. W. G. Hoover. Canonical dynamics: Equilibrium phase space distributions. Phys. Rev. A 31 (3), 1695-1697 (1985) (DOI)
    Ring pucker
  89. H. Sklenar, D. Wustner, and R. Rohs. Using Internal and Collective Variables in Monte Carlo Simulations of Nucleic Acid Structures: Chain Breakage/Closure Algorithm and Associated Jacobians. J. Comput. Chem. 27, 309-315 (2006). (DOI)
    Concerted rotation
  90. G. Favrin, A. Irbäck, and F. Sjunnesson. Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space. J. Chem. Phys. 114, 8154-8158 (2001). (DOI).
  91. A. R. Dinner. Local deformations of polymers with nonplanar rigid main-chain internal coordinates. J. Comput. Chem. 21, 1132-1144 (2000). (DOI)
  92. J. P. Ulmschneider and W. L. Jorgensen. Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and Gaussian bias. J. Chem. Phys. 118, 4261-4271 (2002). (DOI)
  93. L. R. Dodd, T. D. Boone, and D. N. Theodorou. A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses. Mol. Phys. 78, 961–96 (1993) (DOI)
    Analysis of secondary structure segments
  94. G.N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95-99 (1963).
    NetCDF file format
  95. Official website for Unidata's NetCDF format (link)
    Protein and nucleic acid geometries
  96. R. A. Engh and R. Huber. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A47, 392-400 (1991) (DOI)
  97. G. Parkinson, J. Vojtechovsky, L. Clowney, A. T. Brünger, and H. M. Berman. New parameters for the refinement of nucleic acid-containing structures. Acta Cryst., D52, 57-64 (1996) (DOI)
    WCA potential
  98. J. D. Weeks, D. Chandler, and H. C. Andersen. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 54, 5237 (1971). (DOI).
  99. T. Boublik. The Gaussian overlap model again. Mol. Phys. 67, 1327-1336 (1989). (DOI)
    Implicit Solvent Models
  100. A. Vitalis and R. V. Pappu. ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions. J. Comput. Chem. 30, 673-699 (2009). (DOI)
  101. T. Lazaridis and M. Karplus. Effective energy function for proteins in solution. Prot. Struct. Func. Bioinf. 35 (2), 133-152 (1999) (DOI)
  102. W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637 (1983). (website).
    Replica exchange Methodology
  103. R. H. Swendsen and J. S. Wang. Replica Monte Carlo simulation of spin glasses. Physical Review Letters 57, 2607-2609 (1986). (DOI)
  104. Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314 (1-2), 141-151 (1999) (DOI)
  105. Y. Okamoto. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol. Graphics and Modelling, 22 (5), 425-439 (2004) (DOI)
    MPI refs
  106. Official website of OpenMPI (link)
    Special references for certain output and analysis features
  107. B. Žagrović. Helical signature motif in the fiber diffraction patterns of random walk chains. Mol. Phys. 105 (10), 1299-1306 (2007) (DOI)
  108. F. Avbelj and R. L. Baldwin. Role of backbone solvation and electrostatics in generating preferred peptide backbone conformations: Distributions of phi. Proc. Natl. Acad. Sci. USA 100 (10), 5742-5747 (2003) (DOI)
  109. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. SIGMOD '96 Proceedings (DOI)
  110. A. Vitalis and A. Caflisch. Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories. J. Chem. Theor. Comput. 8 (3), 1108-1120 (2012) (DOI)
  111. N. Blöchliger, A. Vitalis, and A. Caflisch. A scalable algorithm to order and annotate continuous observations reveals the metastable states visited by dynamical systems. Comput. Phys. Comm. 184 (11), 2446-2453 (2013) (DOI)
  112. O. Borůvka. "O jistém problému minimálním" and "Příspěvek k řešení otázky ekonomické stavby elektrovodních sítí". translated in Discr. Math. 233 (1–3), 3–36 (2001) (DOI of translation)
  113. V. Jarník. "O jistém problému minimálním". Práce Moravské Přírodovědecké Společnosti, 6, 57–63 (1930) or R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1389–1401 (1957).
  114. J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proc. Amer. Math. Soc., 7 (1), 48–50 (1956) (DOI)
  115. W. Humphrey, A. Dalke, and K. Schulten. VMD - Visual Molecular Dynamics. J. Molec. Graphics 14, 33-38 (1996) (DOI, webpage)
  116. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25 (13), 1605-1612 (2004) (DOI, webpage)
  117. M. Senne, B. Trendelkamp-Schroer, A. S. J. S. Mey, C. Schütte, and F. Noé. EMMA: A Software Package for Markov Model Building and Analysis. J. Chem. Theor. Comput. 8 (7), 2223-2238 (2012) (DOI)
  118. S. V. Krivov and M. Karplus. One-dimensional free-energy profiles of complex systems: progress variables that perserve the barriers. J. Phys. Chem. B 110 (25), 12689-12698 (2006) (DOI)
  119. M. Seeber, A. Felline, F. Raimondi, S. Muff, R. Friedman, F. Rao, A. Caflisch, and F. Fanelli. Wordom: a user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J. Comput. Chem. 32 (6), 1183–1194 (2011) (DOI)
  120. S. Lifson and A. Roig. On the theory of helix-coil transition in polypeptides. J. Chem. Phys. 34 (6), 1963-1974 (1961) (DOI)
    Application examples using CAMPARI or its predecessors
  121. H. T. Tran, X. Wang, and R. V. Pappu. Reconciling Observations of Sequence-Specific Conformational Propensities with the Generic Polymeric Behavior of Denatured Proteins. Biochemistry 44 (34), 11369-11380 (2005) (DOI)
  122. H. T. Tran and R. V. Pappu. Toward an accurate theoretical framework for describing ensembles for proteins under strongly denaturing conditions. Biopys. J. 91, 1868-1886 (2006) (PDF)
  123. A. Vitalis, X. Wang, and R. V. Pappu. Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories. Biophys. J. 93 (6), 1923-1937 (2007) (DOI)
  124. A. Vitalis, X. Wang, and R. V. Pappu. Atomistic Simulations of the Effects of Polyglutamine Chain Length and Solvent Quality on Conformational Equilibria and Spontaneous Homodimerization. J. Mol. Biol. 384 (1), 279-297 (2008) (DOI)
  125. A. Vitalis, N. Lyle, and R. V. Pappu. Thermodynamics of β-Sheet Formation in Polyglutamine. Biophys. J. 97 (1), 303-311 (2009) (DOI)
  126. T. E. Williamson, A. Vitalis, S. L. Crick, and R. V. Pappu. Modulation of Polyglutamine Conformations and Dimer Formation by the N-Terminus of Huntingtin. J. Mol. Biol. 396 (5), 1295-1309 (2010) (DOI)
  127. M. A. Wyczalkowski, A. Vitalis, and R. V. Pappu. New Estimators for Calculating Solvation Entropy and Enthalpy and Comparative Assessments of Their Accuracy and Precision. J. Phys. Chem. B 114 (24), 8166-8180 (2010) (DOI)
  128. A. H. Mao, S. L. Crick, A. Vitalis, C. L. Chicoine, and R. V. Pappu. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 107 (18), 8183-8188 (2010) (DOI)
  129. A. Vitalis and A. Caflisch. Micelle-Like Architecture of the Monomer Ensemble of Alzheimer’s Amyloid-β Peptide in Aqueous Solution and Its Implications for Aβ Aggregation. J. Mol. Biol. 403 (1), 148-165 (2010) (DOI)
  130. R. Halfmann, S. Alberti, R. Krishnan, N. Lyle, C. W. O'Donnell, O. D. King, B. Berger, R. V. Pappu, and S. Lindquist. Opposing Effects of Glutamine and Asparagine Govern Prion Formation by Intrinsically Disordered Proteins. Mol. Cell 73, 72-84 (2011) (DOI)
  131. A. Vitalis and A. Caflisch. 50 Years of Lifson–Roig Models: Application to Molecular Simulation Data. J. Chem. Theor. Comput. 8 (1), 363-373 (2012) (DOI)
  132. R. K. Das, S. L. Crick, and R. V. Pappu. N-Terminal Segments Modulate the α-Helical Propensities of the Intrinsically Disordered Basic Regions of bZIP Proteins. J. Mol. Biol. 416 (2), 287-299 (2012) (DOI)
  133. A. Radhakrishnan, A. Vitalis, A. H. Mao, A. T. Steffen, and R. V. Pappu. Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks. J. Phys. Chem. B 116 (23), 6862-6871(2012) (DOI)
  134. R. Scalco and A. Caflisch. Ultrametricity in protein folding dynamics. J. Chem. Theor. Comput. 8 (5), 1580-1588 (2012) (DOI)
  135. W. Meng, N. Lyle, B. Luan, D. P. Raleigh, and R. V. Pappu. Experiments and simulations show how long-range contacts can form in expanded unfolded proteins with negligible secondary structure. Proc. Natl. Acad. Sci. USA 110 (6), 2123-2128 (2013) (DOI)
  136. R. K. Das and R. V. Pappu. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. USA 110 (33), 13392-13397 (2013) (DOI)
  137. N. Lyle, R. K. Das, and R. V. Pappu. A quantitative measure for protein conformational heterogeneity. J. Chem. Phys. 139 (12), 121907 (2013) (DOI)
  138. A. Magno, S. Steiner, and A. Caflisch. Mechanisms and kinetics of acetyl-lysine binding to bromodomains. J. Chem. Theor. Comput. 9 (9), 4225-4232 (2013) (DOI)
Design downloaded from free website templates.